教育行業(yè)A股IPO第一股(股票代碼 003032)

全國咨詢/投訴熱線:400-618-4000

Spark SQL通過JDBC連接MySQL讀寫數據

更新時間:2015年12月29日16時01分 來源:傳智播客云計算學科 瀏覽次數:

Spark SQL通過JDBC連接MySQL讀寫數據

Spark SQL可以通過JDBC從關系型數據庫中讀取數據的方式創(chuàng)建DataFrame,通過對DataFrame一系列的計算后,還可以將數據再寫回關系型數據庫中。
一.從MySQL中加載數據(Spark Shell方式)
1.啟動Spark Shell,必須指定mysql連接驅動jar包
/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-shell \
--master spark://node1.itcast.cn:7077 \
--jars /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \
--driver-class-path /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar

2.從mysql中加載數據
val jdbcDF = sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://192.168.10.1:3306/bigdata", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "person", "user" -> "root", "password" -> "123456")).load()

3.執(zhí)行查詢
jdbcDF.show()
 
二.將數據寫入到MySQL中(打jar包方式)
1.編寫Spark SQL程序
package cn.itcast.spark.sql

import java.util.Properties
import org.apache.spark.sql.{SQLContext, Row}
import org.apache.spark.sql.types.{StringType, IntegerType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}

object JdbcRDD {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("MySQL-Demo")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
    //通過并行化創(chuàng)建RDD
    val personRDD = sc.parallelize(Array("1 tom 5", "2 jerry 3", "3 kitty 6")).map(_.split(" "))
    //通過StructType直接指定每個字段的schema
    val schema = StructType(
      List(
        StructField("id", IntegerType, true),
        StructField("name", StringType, true),
        StructField("age", IntegerType, true)
      )
    )
    //將RDD映射到rowRDD
    val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
    //將schema信息應用到rowRDD上
    val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
    //創(chuàng)建Properties存儲數據庫相關屬性
    val prop = new Properties()
    prop.put("user", "root")
    prop.put("password", "123456")
    //將數據追加到數據庫
    personDataFrame.write.mode("append").jdbc("jdbc:mysql://192.168.10.1:3306/bigdata", "bigdata.person", prop)
    //停止SparkContext
    sc.stop()
  }
}


2.用maven將程序打包

3.將Jar包提交到spark集群
/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \
--class cn.itcast.spark.sql.JdbcRDD \
--master spark://node1.itcast.cn:7077 \
--jars /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \
--driver-class-path /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \
/root/spark-mvn-1.0-SNAPSHOT.jar

0 分享到:
和我們在線交談!